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Abstract
Currently, levamisole is the most common cocaine adulterant worldwide and it is known to induce a variety of adverse
side effects. Animal studies and human case reports suggest potential neurotoxicity of the compound but neither
neuroanatomical nor cognitive effects of levamisole have been systematically investigated in cocaine users so far. We
examined cognitive performance and cortical structural differences between chronic cocaine users with low and high
recent exposure to levamisole objectively determined by quantitative toxicological hair analyses. In Study 1, we
compared 26 chronic cocaine users with low levamisole exposure (lowLevCU), 49 matched cocaine users with high
levamisole exposure (highLevCU), and 78 matched stimulant-naive controls regarding cognitive functioning employing
a comprehensive neuropsychological test battery. In Study 2, we investigated cortical thickness by use of T1-weighted
MRI in a subgroup of 12 lowLevCU, 17 highLevCU, and 38 stimulant-naive controls. In Study 1, both cocaine user groups
showed significant impairments in the cognitive domains of attention and working memory as well as in the global
cognitive index. However, highLevCU showed significantly worse executive functions compared to lowLevCU although
both groups did not differ in severity of cocaine consumption and other clinical dimensions. Study 2 revealed that
highLevCU, displayed reduced cortical thickness specifically in the middle frontal gyrus compared to both controls and
lowLevCU. Our results suggest that levamisole exposure during the last months in cocaine users is associated with
increased executive function impairments and pronounced thinning of the lateral prefrontal cortex. Consequently,
prevention and drug policy-making should aim to reduce levamisole contamination of street cocaine.

Introduction
The tetramisole enantiomer levamisole is used as a

veterinary anthelminthic that was also approved as an

adjuvant in colon cancer treatment in some countries
before it was withdrawn from the market in 2000 because
of its adverse side effects1. In 2004, the U.S. Drug Enfor-
cement Agency (DEA) initially detected levamisole as a
adulterant in cocaine seizures2. In the mobile drug-
checking program of Switzerland, levamisole was recog-
nized in 2008 for the first time as an adulterant in street
cocaine. Measurements revealed that between 2009 and
2016, 50 to 70% of all cocaine specimens contained
levamisole (Fig. 1). Similar trends of extensive levamisole
contamination of street cocaine across the last decade
were shown for the US and for different European
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countries3,4. The recent drop of the levamisole prevalence
in Switzerland is a phenomenon that to our knowledge
has not been shown in other countries so far (Fig. 1). By
contrast, in October 2017, the DEA reported that 87% of
the seized and analyzed cocaine bricks contained leva-
misole.4 Thus, levamisole is currently the most common
cocaine adulterant in Europe and North America3,4.
The mixture of cocaine with other pharmacological

components (primarily prescription drugs and over-the-
counter agents, see Fig. 1) prior to being sold on the
streets lead to a decline of cocaine purity in the main
consumer markets of North America and Europe5. These
adulterants were generally added for two reasons. First,
they are available, cheap, have similar chemo-physical
properties (color, texture, melting point) and, thus,
increase the profit of the drug dealer. Second, some
additives are supposed to enhance the psychoactive effects
of the drug by exerting additional pharmacological
effects1,6. In the case of levamisole, it was shown that the
compound itself has negligible effects on monoamine
transporters, but it was proposed that the mother com-
pound is metabolized—among others—to aminorex, a
psychostimulant agent that shows potent amphetamine-
like effects1,6,7. A drug discrimination study with rats
showed very recently that levamisole in fact potentiates
the subjective effects of cocaine when administered
concomitantly8.

Levamisole has a wide range of adverse side effects. In
recent years, an accumulating body of literature described
a clear linkage between levamisole-adulterated cocaine
use and the occurrence of neutropenia and agranulocy-
tosis, vasculitis, retiform purpura and other forms of skin
necrosis, vasculopathy, arthralgia, and leukoencephalo-
pathy1,9–11. Its potential neurotoxicity was first reported
in dogs experimentally exposed to levamisole showing
disseminated perivascular cuffing with mononuclear cells
throughout the brain12. Since 1992, a number of case
reports suggested that the association between the
administration of levamisole (in cancer therapy or
through cocaine intake) and multifocal inflammatory
leukoencephalopathy is also apparent in humans1,9,13. In
sum and although exact data on the prevalence of toxicity
related to levamisole-adulterated cocaine abuse are
missing so far3, its wide distribution and potential neu-
rotoxicity have been classified a serious public health
concern worldwide11,14. Although it is important to better
understand the specific neuropsychiatric risks associated
with levamisole exposure1 no case–control study investi-
gating the neuropsychiatric risks of levamisole-
contaminated cocaine has been published yet.
Previously, we have shown that the intensity of cocaine

intake covaries with cognitive impairments in cocaine
users (CU), suggesting that the well-described cognitive
deficits in this population are largely drug-induced but

Fig. 1 Additives in cocaine samples in Switzerland between 2004 and 2018. Lines indicate percent frequency of occurrence. Recruitment
periods of cocaine users for both studies are shaded in gray. The data were collected in mobile laboratories in Berne, Zurich, and Basel (total n= 771).
Data were provided by the Office of the Cantonal Pharmacist, Health & Social Welfare Department State of Berne, Switzerland (Daniel Allemann,
Hans-Jörg Helmlin, and André Mürner). *Data only from the first half-year 2018 (January–August)
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also potentially reversible15–17. In this context, we now
hypothesize that cocaine-related cognitive impairments
might not only derive from cocaine itself, but also from its
main adulterant levamisole. Thus, in Study 1, we com-
pared two CU groups with similar cocaine use severity but
with high (highLevCU) vs. low recent levamisole exposure
(lowLevCU) and a matched stimulant-naive control group
in their performance in a comprehensive neuropsycho-
logical test battery. Low vs. high levamisole exposure was
categorized according to a levamisole–cocaine ratio (LCR)
in hair samples of the participants. Both compounds were
measured by cutting-edge quantitative hair analyses. In
line with the above mentioned literature of cocaine-
induced cognitive dysfunctions and levamisole-induced
neurotoxic effects, we hypothesized that higher levamisole
exposure is associated with more severe cognitive
dysfunctions.
Based on the findings from Study 1, showing sig-

nificantly worse executive functions in highLevCU com-
pared to lowLevCU, we subsequently performed a second
study with structural magnetic resonance imaging (MRI)
in a subsample with similar group classification criteria. In
Study 2, we focused on regions-of-interest (ROI) in the
frontal lobe—which have been consistently linked to
executive function measures used in Study 118-21 as well
as on an occipital control region in order to examine
whether these levamisole-related cognitive dysfunctions
are specifically associated to structural alterations of the
frontal cortex. Accordingly, we expected that high leva-
misole exposure is linked to cortical thinning explicitly in
the frontal lobe.

Materials and Methods
Participants
Study 1
The present data were collected as part of the Zurich

Cocaine Cognition Study (ZuCo2St). The study included
75 CU, 78 healthy and stimulant-naive healthy controls
(for recruitment and selection details see Methods S1).
The three groups were matched for age, verbal intelli-
gence, sex, and smoking status. The sample of Study
1 shows a 91% overlap with a sample that was previously
published15. Exclusion criteria for all participants were an
acute or previous neurological disorder or head injury,
any clinically significant medical disease, and use of pre-
scription drugs affecting the brain. Additional specific
exclusion criteria for both CU groups were the use of
opioids, polysubstance use, and any Axis I DSM-IV adult
psychiatric disorder—with the exception of cocaine, can-
nabis, and alcohol abuse; a history of affective disorders
(acute major depression was excluded); and attention-
deficit hyperactivity disorder (ADHD). Specific exclusion
criteria for the control subjects were any current or for-
mer Axis I DSM-IV psychiatric disorder and any form of

addiction or regular illegal drug use (lifetime > 15 occa-
sions), with the exception of recreational cannabis use.
Inclusion criteria for the two user groups were cocaine as
primary used illegal drug, cocaine use of >0.5 g per month,
and an abstinence duration of <6 months. Before the
testing session, participants were asked to abstain from
illegal substances for at least 72 h and not to consume
alcohol for 24 h. Compliance with these instructions was
controlled by urine drug screenings (Methods S2). All
participants in both studies provided written informed
consent and were compensated for their participation.
Both studies were approved by the Cantonal Ethics
Committee of Zurich.

Study 2
A total of 29 CU and 38 healthy cocaine-naive controls

were included in Study 2. A subsample of 17 individuals
previously participated in Study 1 (8 controls, 9 CU; for
details see Methods S3). Exclusion and inclusion criteria
for CU and healthy controls were largely identical to
Study 1, apart from that psychiatric medication was
allowed in CU in Study 2. Moreover, six participants with
alcohol dependence (three in each CU group) and two
highLevCU with opioid co-use were included for power
reasons. However, the inclusion of these participants did
not affect the main results (Tables S1/S2). Participants
were mostly right-handed (92.5%) and there was no group
difference in handedness (χ2(2)= 3.85, p= 0.15).

Group classification
When available, 6 cm hair samples were cut from the

occiput enabling to objectively estimate drug use and
levamisole exposure during the last 6 months. Hair
samples were analyzed with liquid chromatography-
tandem mass spectrometry (Methods S2). As in Study 1
only 2 of 75 CU (2.7%) and in Study 2 only 1 of 29 CU
(3.4%) did not display any traces of levamisole in hair, we
decided to compare low vs. high exposure groups. The
decisive criterion for the group assignment was a LCR
(levamisole concentration/cocaine concentration) higher/
lower than 25%. The LCR-cutoff of 25% was equal to the
mode value in the right-skewed LCR distribution curve
(Figure S1).

Study 1
CU were split into 26 CU with a LCR of <25% (low

levamisole exposure CU, lowLevCU) and 49 CU with a
LCR of >25% (high levamisole exposure CU, high-
LevCU). For 28 of the 75 CU, <6 cm were available so
that at least 3 cm samples were analyzed (3-month drug
exposure).
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Study 2
CU were assigned to either the lowLevCU (n= 12) or

the highLevCU (n= 17) group, respectively. For 10 out of
29 CU, only 3 cm hair samples were available.

Procedure
Trained psychologists conducted the Structured Clin-

ical Interview (SCID-I) according to DSM-IV22. Drug use
was assessed with the Interview for Psychotropic Drug
Consumption and ADHD symptoms by means of the
ADHD self-rating scale (ADHD-SR)23,24 The verbal IQ
was estimated by a standard German vocabulary test25.

Neuropsychological test battery (Study 1)
The test battery consisted of the Letter Number

Sequencing Task (LNST)26 a German version of the Rey
Auditory Verbal Learning Test (RAVLT)27 and four tests
from the Cambridge Neuropsychological Test Automated
Battery (CANTAB, http://www.cantab.com): Rapid Visual
Processing (RVP), Spatial Working Memory (SWM),
Intra/Extradimensional Set-Shifting (IED), and Paired
Associates Learning (PAL). Analogous to our previous
work15,28, 15 predefined cognitive test parameters were z-
transformed on the basis of means and standard devia-
tions of the control group (n= 78) and—in respect of data
reduction—combined into four cognitive domains
(attention, working memory, declarative memory, and
executive function). These four domains were further
equally integrated into a global cognitive index (GCI)15,28.

Structural MRI acquisition and image processing (Study 2)
All subjects were scanned using a 3T Philips Achieva

whole-body scanner equipped with a 32-channel receive
head coil. High-resolution structural scans were collected
using a standard T1-weighted 3D magnetization-prepared
rapid gradient echo (MPRAGE) pulse sequence with
repetition time (TR)= 8.08 ms, echo time (TE)= 3.7, field
of view (FOV)= 240×240mm, 160 slices, voxel size of
(1×1×1)mm3. Cortical surface reconstruction was per-
formed using the software package FreeSurfer v5.3.0
(http://surfer.nmr.mgh.harvard.edu/, Methods S4)29–31.
ROIs were extracted by parcelating the cortex using the
Desikan–Killiany Atlas32. Based on the findings from
Study 1, we restricted our analysis to ROIs in the lateral
frontal lobes. Next to the mean cortical thickness over the
whole cortical surface, our analysis included the middle
frontal gyrus (MFG, caudal and rostral MFG), inferior
frontal gyrus (IFG, pars opercularis, pars orbitalis, pars
triangularis), and the lateral orbitofrontal gyrus (lOFG).
We also included the superior frontal gyrus (SFG), a
region associated with executive functions33. The peri-
calcarine cortex (primary visual cortex) was used as a
control region due to its low concentration of dopamine
transporters34,35 and low involvement in executive

functions (Figure S2). As we did not expect lateralized
effects of a systemic drug application, extracted thickness
values for each cortical area were averaged across hemi-
spheres. This procedure was additionally justified as cor-
tical thickness in all ROIs was significantly correlated
between the right and left hemisphere (Methods S5).
Thickness measures within the ROIs were z-transformed
on the basis of means and standard deviations of the
control group (n= 38) for better comparisons between
the ROIs.

Statistical analysis
Demographic and drug use data were analyzed with

Pearson’s χ2 tests, Students t tests, and analyses of var-
iance (ANOVA), where appropriate. Group differences
analyses in cognitive performance and cortical thickness
were conducted by analyses of covariance (ANCOVA),
followed by Sidak-corrected post hoc comparisons. In
accordance with our previous study15, age and verbal IQ
were introduced as covariates. Because ADHD has been
linked to cognitive functioning in CU15,28, and to altera-
tions in brain structure36,37, all ANCOVAs were addi-
tionally adjusted for the ADHD-SR score24. Given that
lowLevCU and highLevCU 1) paid similar average prices
for 1 g cocaine (Table 1, Table S3) and 2) reported
comparable socioeconomic background in both studies
(Table S4), socioeconomic status was not considered as a
covariate. In the ANCOVAs that focused on the cocaine
group comparison (lowLevCU vs. highLevCU), we intro-
duced two further covariates: abstinence duration (as
lowLevCU and highLevCU differed in self-reported days
since last use, see Table 1) and cumulative cocaine dose
because of the increased risk of cognitive impairment by
ascending lifetime use of cocaine15. An additional cortical
thickness analysis including duration of cocaine intake
was calculated to control for differences between the two
CU groups in Study 2 (Table S3). For correlation analyses
the drug use parameters were log-transformed because
they deviated from the normal distribution (Shapiro–Wilk
W < 0.001). All confirmatory statistical comparisons were
carried out on a significance level of p < 0.05.

Results
Study 1
Demographic characteristics and drug use
As intended by the matching procedure, the three

groups did not differ regarding age, verbal IQ, sex dis-
tribution, and smoking status (Table 1). Additionally,
there were no differences regarding the average price paid
for 1 g of cocaine (Table 1) and socioeconomic status
between both groups (Table S4). However, both CU
groups had significantly fewer years of education and
higher BDI scores than controls but did not differ from
each other. Moreover, highLevCU displayed significantly
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Table 1 Demographic data and drug use pattern Study 1

Controls (n= 78) LowLevCU (n= 26) HighLevCU (n= 49) Valuea df, dferr p

Age (y) 30.2 (8.9) 33.0 (9.5) 31.5 (9.1) F= 1.03 2.150 0.36

Sex (f/m) 23/55 7/19 11/38 x2= 0.76 2 0.68

Verbal IQ (MWT-B)b 105.4 (9.2) 101.4 (8.7) 102.2 (10.7) F= 2.50 2.150 0.09

Education (y) 10.7 (1.7) 9.8 (1.3)* 9.8 (1.7)** F= 6.18 2.150 0.003

Smoking (y/n)c 57/21 23/3 39/10 x2= 2.81 2 0.25

BDI scored 4.4 (4.4) 8.4 (6.1)* 9.6 (8.2)*** F= 12.25 2.150 < 0.001

ADHD-SR scoree 7.6 (4.7) 11.2 (6.3) 15.9 (9.1)***° F= 23.78 2.150 < 0.001

Cocaine

Times per weekg — 2.0 (2.2) 1.8 (1.9) T= 0.50 73 0.62

g per weekg — 3.8 (6.2) 3.3 (6.4) T= 0.34 73 0.74

Years of use — 7.7 (6.8) 8.6 (5.4) T=−0.63 73 0.53

Maximum dose (g/day) — 6.5 (6.7) 5.8 (6.2) T= 0.48 73 0.63

Cumulative dose (g) — 4130 (8272) 2658 (6689) T= 0.83 73 0.41

Last consumption (days)h — 29.4 (37.0) 13.3 (15.9) T= 2.12 73 0.04

Urine toxicology (neg/pos)i 78/0 21/5 33/16 x2= 1.52 1 0.22

Average price paid for 1 g (CHF)j 1 g (CHF)j — 97.5 (19.6) 87.5 (21.5) T= 1.95 73 0.06

Hair analysis

Cocaine pg/mg — 10,261 (20,667) 12,993 (24,031) T=−0.49 73 0.62

Benzoylecgonine pg/mg — 2853 (6901) 2550 (4365) T= 0.23 73 0.82

Norcocaine pg/mg — 292 (655) 312 (484) T=−0.15 73 0.88

Levamisole pg/mg — 967 (1745) 6931 (11,737) T=−3.48 73 0.001

Levamisole–cocaine ratio — 0.12 (0.1) 0.64 (0.3) T=−10.07 73 <0.001

Alcohol

Pure ethanol g per weekg 109.6 (121.9) 185.2 (281) 192.2 (204.5)* F= 3.61 2.150 0.03

Years of use 12.6 (9.0) 11.7 (7.9) 13.3 (7.2) F= 0.34 2.150 0.71

Nicotine

Cigarettes per dayg 8.8 (9.6) 16.7 (13.1)** 13.5 (10.3)* F= 6.68 2.150 0.002

Years of use 8.4 (8.7) 13.6 (9.6)* 12.9 (8.5)* F= 5.57 2.150 0.005

Cannabis

g per weekg 0.4 (0.9) 1.5 (4.0) 0.7 (1.7) F= 2.81 2.150 0.06

Years of use 4.3 (5.7) 7.4 (9.2) 9.6 (7.7)*** F= 8.61 2.150 <0.001

Cumulative dose (g) 665 (3182) 3289 (7433)* 1823 (2886) F= 4.18 2.150 0.02

Last consumption (days)h 41 (57);n= 34 31 (43);n= 14 25 (31);n= 34 F= 1.08 2.79 0.34

Urine toxicology (neg/pos)i 68/10 18/8 35/14 x2= 6.35 2 0.04

Amphetamine

g per weekg 0.0 (0.0) 0.0 (0.1) 0.1 (0.2)* F= 4.15 2.150 0.02

Years of use 0.0 (0.0) 1.1 (3.1) 1.5 (2.9)*** F= 8.23 2.150 <0.001

Cumulative dose (g) 0.0 (0.1) 6 (23.7) 28.4 (66.8)*** F= 8.14 2.150 <0.001

Last consumption (days)h F= 1.23 2.19 0.31
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higher ADHD-SR scores than lowLevCU. As a con-
sequence of the group classification, the two CU groups
differed strongly in their absolute levamisole concentra-
tions and levamisole-related LCR but displayed
similar values in any other cocaine-related hair toxicology
or self-reported cocaine use parameter (with exception of
abstinence duration). Additionally, hair samples and
cumulative doses revealed a clear dominance of cocaine
compared with other illegal drugs, as intended by the
inclusion and exclusion criteria.

Neurocognitive measures
As shown before in this sample15, controls and

CU (lowLevCU+ highLevCU) differed significantly
in the GCI and all four domains (F(1148)= 10.64–28.34,
p ≤ 0.001) (Table S5). Three-group ANCOVAs (controls
vs. lowLevCU vs. highLevCU) for the GCI (F(2147)= 15.26,
p < 0.001) and across all four cognitive domains (F(2147)=
6.70–10.45, p= 0.002–0.0001) showed significant group
effects (Fig. 2a, Table S6). Linear trends across groups were
shown for all comparisons (p < 0.01–0.001), suggesting not
only a cocaine but also a levamisole effect on cognitive
functioning. The post hoc pairwise comparisons showed
that lowLevCU differed from controls in the GCI, attention,
and working memory domain, while highLevCU differed
from controls in all cognitive domains (Fig. 2a). In general,

effect sizes were considerably higher for highLevCU (d=
0.57–0.80) compared to lowLevCU (d= 0.32–0.59). Sub-
sequently, to adjust for even subtle differences in cocaine
use intensity, both CU groups were compared using
ANCOVAs in which abstinence duration und cumulative
lifetime dose of cocaine were additionally included. Here,
highLevCU showed a stronger impairment of executive
functions with a medium effect size compared to lowLevCU
(F(1,68)= 5.02, p < 0.05, d= 0.55). Additionally, the GCI (F
(1,68)= 3.21, p= 0.08, 0.42) and declarative memory (F
(1,68)= 3.21, p= 0.08, d= 0.44) showed statistical trends
towards significance with approximately medium effect
sizes (Fig. 2b). The impact on executive function was mainly
driven by a worse performance in the IDE task and
recall consistency (Table S7), indicating more pronounced
impairments specifically in rule acquisition and
reversal learning as well as in memory organization in
highLevCU. An exploratory analysis of the IDE stages
revealed that highLevCU made more errors specifically in
the intradimensional set-shifting (pre-ED errors: (F(1,68)=
0.01, p < 0.05, d= 0.64) but not in the extradimensional set-
shifting (ED errors: F(1,68)= 6.02, p= 0.94, d= 0.02;
Figure S3). Notably, in a combined CU group,
the executive function performance correlated negatively
with the log-transformed levamisole values in hair samples
(r=−0.23, p < 0.05, one-tailed; Figure S4).

Table 1 continued

Controls (n= 78) LowLevCU (n= 26) HighLevCU (n= 49) Valuea df, dferr p

122 (0)

n= 1

97 (71)

n= 5

59 (54)

n= 16

Hair analysis pg/mg 1 (7) 24 (69) 118 (313)** F= 6.57 2.150 0.002

MDMA

Tablets per weekg 0.0 (0.0) 0.0 (0.0) 0.1 (0.2)***° F= 7.93 2.150 <0.001

Years of use 0.3 (1.7) 1.3 (2.4) 3 (4.5)*** F= 11.83 2.150 <0.001

Cumulative dose (tablets) 0.9 (3.2) 69.9 (154.3)* 54.1 (168.4)* F= 5.21 2.150 0.007

Last consumption (days)h 5 (0)

n= 1

92 (0)

n= 1

71 (87)

n= 17

F= 0.31 2.16 0.741

Hair analysis pg/mg 4 (23) 177 (337) 831 (1902)***° F= 8.95 2.150 <0.001

Hallucinogens

Cumulative dose (times) 0.7 (1.8) 9.7 (22.2)** 6.8 (10.5)** F= 8.76 2.150 <0.001

Means and standard deviations. Significant p values are shown in bold
aANOVA (all groups; significant Sidak post hoc test vs. control group: *p < 0.05; **p < 0.01; ***p < 0.001; vs. lowLevCU: °p < 0.05; °°p < 0.01); x² test (all groups/cocaine
users only) for frequency data; Independent t-test (cocaine users only)
bVerbal IQ was assessed by the Mehrfachwahl–Wortschatz–Intelligenztest25
cSmoking habits were assessed by the Fagerstroem Test of Nicotine Dependence63
dBDI Beck Depression Inventory64
eADHD-SR ADHD self-rating scale24
fCraving for cocaine was assessed by the Brief-CCQ65

gAverage use during the last 6 months
hLast consumption is averaged only for persons who used the drug in the last 6 months. In this case, sample size (n) is shown
iCut-off values for cocaine= 150 ng/ml and for Tetrahydrocannabinol 50 ng/ml66
jPrice for 1 g cocaine in Swiss Francs paid by cocaine users (self-report). The quoted price is presumably below the real street price as some users paid reduced rates at
intermediaries. Moreover, individuals who got the cocaine for free (e.g., as a gift) were excluded (n= 1 lowLevCU and n= 1 highLevCU)
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Study 2
Demographic characteristics and levamisole analysis
Again, the three groups did not differ regarding edu-

cation, sex distribution, smoking status, average price paid
for 1 g of cocaine (Table S3), and socioeconomic status
(Table S4). As in Study 1, the two CU groups showed

higher BDI and ADHD-SR scores than healthy controls.
Moreover, the lowLevCU had a significant lower verbal
IQ than the highLevCU group and the controls. Hair
toxicology measures between the two CU groups did only
differ for the measured levamisole concentration as well
as the levamisole-related LCR.

Fig. 2 Mean z-scores and standard errors for the global cognitive index (GCI) and the four cognitive domains. a All values corrected for age,
verbal IQ, and ADHD (based on all three groups). Sidak post hoc tests: *p < 0.05; **p < 0.01; ***p < 0.001. Cohen’s d vs. controls. b Cocaine user group
values corrected for age, verbal IQ, ADHD, abstinence duration, and cumulative cocaine dose (based on cocaine user groups). Sidak post hoc tests: *p
< 0.05. Cohen’s d lowLevCU vs. highLevCU
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Thickness measures
Three-group comparisons revealed significant group

effects on cortical thickness for the whole brain ROI (F
(2,61)= 3.90, p < 0.05), and the MFG (F(2,61)= 3.61, p <
0.05; Fig. 3a, Table S1). Both measures showed significant

linear trends across groups (p < 0.05) and post hoc pair-
wise comparisons indicated that cortical thickness was
significantly decreased in highLevCU compared to con-
trols. As in Study 1 two additional cocaine-related cov-
ariates were added for the two-group ANCOVAs

Fig. 3 Mean cortical thickness (in mm) and standard errors for the whole brain and five regions of interest. a All values corrected for age,
verbal IQ, and ADHD (based on all three groups). Sidak post hoc tests: *p < 0.05. Cohen’s d vs. controls. b Cocaine user group values corrected for age,
verbal IQ, ADHD, abstinence duration, and cumulative cocaine dose (based on cocaine user groups). Sidak post hoc tests: *p < 0.05. Cohen’s d
lowLevCU vs. highLevCU
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(lowLevCU vs. highLevCU): abstinence duration and
cumulative lifetime dose (Fig. 3b, Table S2). A significant
group difference was found for the MFG showing a strong
effect size (F(1,22)= 5.65, p < 0.05, d= 0.84).
This effect remained significant, when alcohol (pure
ethanol in g per week) was considered as an additional
covariate (F(1,21)= 5.16, p < 0.05, d= 0.80) of potential
impact on cortical thickness. ANCOVAs for whole brain,
IFG, and lOFG—albeit not statistically significant—
showed medium effect sizes (F(1,22)= 1.52–2.74, p=
0.23–0.11, d= 0.45–0.56). A small effect was applicable
for the SFG (F(1,22)= 0.18, p= 0.67, d= 0.17). By con-
trast, no effect was found for the pericalcarine gyrus as
expected (F(1,22)= 0.00, p= 0.99, d= 0.00). Importantly,
MFG thickness was negatively correlated with the log-
transformed levamisole hair concentration (r=−0.32, p
< 0.05, one-tailed; Figure S5).

Discussion
The aim of the present studies was to examine whether

the worldwide highly prevalent cocaine adulterant leva-
misole is associated with higher risks for cognitive
impairment and structural brain alterations in chronic CU
with recent levamisole exposure. We first demonstrated
that highLevCU showed significantly worse executive
functions (Cohen’s d= 0.55) compared to individuals
with equivalent cocaine use intensity but lower levamisole
hair concentrations. Although not significant, similar
patterns with approximately medium effect sizes were also
found for the global cognition score (d= 0.42) and
declarative memory performance (d= 0.44), but not for
attention (d= 0.12) and working memory (d= 0.04).
Notably, compared to stimulant-naive healthy controls,
significant cognitive deficits were still present in CU with
low levamisole exposure. Based on these initial findings,
we subsequently performed a second study employing
structural MRI analyses. In line with the results from the
cognitive study, we found significantly reduced cortical
thickness in the MFG of CU with high levamisole hair
concentrations (d= 0.84). Moreover, even though not
statistically significant-related effects were shown for the
whole brain (d= 0.56), IFG (d= 0.45), and lOFG (d=
0.54), while in an occipital control region no levamisole
effect was observable (d= 0.00).
In sum, these findings confirm our previous proposi-

tion15,16 that cocaine use is linked with broad cognitive
impairments in the present sample. However, also the
adulterant levamisole seems to be related to these
impairments, most strongly in the executive functions but
also in declarative memory and global cognitive functions.
Moreover, levamisole-associated reductions of cortical
thickness were also found in lateral frontal brain areas,
indicating possible neuroanatomical underpinnings of
executive function deficits found in highLevCU. In line

with an early animal study12, these results suggest that
levamisole is linked to neurotoxic effects also in humans
with regular use of levamisole-contaminated cocaine.
Importantly, because highLevCU and lowLevCU did not
differ in their socioeconomic background and paid com-
parable prices for their street cocaine, low income is likely
not an alternative explanation for the cognitive and cor-
tical alterations found in cocaine users with high leva-
misole exposure.
Previous studies consistently showed strong deficits of

CU in attention and working memory, whereas the het-
erogeneous concept of executive functions was usually
less affected15,38–40. Here, we also found clear cocaine but
no pronounced levamisole effects in the domains of
attention and working memory but a significant levami-
sole effect on executive functions. Thus, one might
speculate that at least some of the reported discrepant
findings in the newer literature regarding executive
function impairments41 might be explained by differences
in recent levamisole exposure. As levamisole was pro-
posed to be metabolized into the amphetamine-like sti-
mulant aminorex and other metabolites1,6,7, and previous
reports showed pronounced executive function decre-
ments in chronic amphetamine users42,43, the present
effect might not be linked to levamisole alone but also to
its metabolic products.
The indicated levamisole effect on the executive func-

tion domain was mainly driven by low performance in an
attentional set-shifting/reversal learning task (IED) and
worse recall consistency in a verbal learning task
(RAVLT), while the strategy score of a spatial working
memory task (SWM) was less affected. This supports the
assumption that levamisole might have little effect on
working memory processes per se but impacts cognitive
flexibility and memory organization. Remarkably, these
specific cognitive impairments are well in line with the
found structural alterations in the MFG, given that (1) the
MFG is prominently involved in attentional set-shifting
and reversal learning44,45 and (2) patients with focal
frontal lesions have difficulties in memory organization
such as recall consistency18,19. Moreover, frontal lobe
atrophy has been shown as the most consistent predictors
for recall consistency in patients with multiple sclerosis46.
Finally, age-related changes presumably of the prefrontal
cortex (including predominantly the MFG)47,48 as well as
excitotoxic prefrontal lesions49 are associated with
impairments in set-shifting in monkey models.
To date, the exact neurobiological substrates behind the

cocaine-related cognitive alterations are still not fully
understood50. Cocaine is an unspecific monoamine
reuptake inhibitor with high affinity for dopamine, ser-
otonin, and norepinephrine transporters (DAT, SERT,
and NET)51. Thus, cognitive deficits most likely depend
on adaptions involving regions with high concentrations
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of monoamine responsive cells such as the prefrontal
cortex52. Also the exact neurobiological effects of leva-
misole remain unclear. Recent research suggested that
levamisole has only minor effects on monoamine trans-
porter6. Yet, the metabolite aminorex, has a similar affi-
nity to NET and DAT as cocaine, while showing less
binding to the SERT6. However, it is not fully clear if
aminorex is able to augment cocaine effects in humans in
general, but due to its longer half-life it might at least
prolong the stimulant effects of cocaine6,53. Interestingly,
specific impairments in attentional set-shifting were
reported for noradrenergic but not cholinergic deaf-
ferentation of the medial prefrontal cortex—the homolog
of the primate dorsolateral prefrontal cortex in rats54.
Given that we previously proposed that CU might show
neuroplastic adaptations in the noradrenaline system55,56

one could speculate that not only cocaine but specifically
a cocaine–aminorex combination can disrupt the nora-
drenaline transmission. Moreover, medically prescribed
levamisole intake is supposed to cause multifocal
inflammatory leukoencephalopathy57,58, a disease asso-
ciated with white matter lesions. Thus, executive function
impairments might be mainly explained by levamisole (or
its metabolites) as white matter lesions are associated with
cognitive dysfunctions in general59 and executive function
deficits in particular60. Importantly, executive function
deficits are also strongly linked to gray matter alterations
in the prefrontal cortex61. Thus, executive function defi-
cits in highLevCU are likely explained by neuroanatomical
alterations of the prefrontal cortex beyond the cortical
abnormalities linked to cocaine consumption per se42.
A limitation of this study is that the objective hair tox-

icology parameters covered only the last 3 to 6 months.
Consequently, the group classification based on the LCR
reflected a recent but not necessarily a long-term levamisole
exposure. Moreover, we did not apply a neuropsychological
test battery in Study 2 at the time of structural imaging and,
thus, were not able to directly correlate cognitive perfor-
mance with cortical thickness scores. Finally, the applied
cross-sectional case–control study design makes it impos-
sible to determine the causal relationship between levami-
sole and neurocognitive and imaging measures.
In conclusion, CU with high levamisole exposure

showed significantly worse executive functioning than CU
with comparable cocaine use severity but low levamisole
contamination. Moreover, high levamisole exposure was
associated with lower cortical thickness, primarily for the
MFG but also—even though not statistically significant—
in additional frontal regions and on a whole brain level.
Altogether, our results indicate that exposure to high
doses of levamisole during the last months (covered by
the hair analyses) goes along with pronounced neuro-
cognitive and cortical alterations in CU, strongly indi-
cating a possible neurotoxic effect of levamisole in

humans. Consequently, CU should be better informed
about the consequences of levamisole-adulterated cocaine
and drug policy makers should consider prevention and
harm reduction programs, which lead to a reduction of
levamisole contamination of street cocaine such as drug-
checking services for users62.
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